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PREFACE
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Associates, Inc.), contract operator of AEDC, AFSC, Arnold Air Force
Station, Tennessee. The work was conducted under ARO Project Nos.
PF422 and P32A-29A, The authors of this report were C. F. Lo and
H. N. Glassman, ARO, Inc. The manuscript (ARO Control No. ARO-
PWT-TR-75-63) was submitted for publication on May 21, 1975.
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1.0 INTRODUCTION

The minimization of tunnel wall interferences has become one of
the major tasks after the introduction of ventilated transonic tunnels.
A variable, but uniformly distributed, porosity wall was designed to
reduce interferences at various Mach numbers, e.g., the Aerodynamic
Wind Tunnel (4T) at AEDC. The recent requirement for an increase in
the size of the testing model to achieve higher Reynolds number creates
severe interference which prohibits obtaining useful data. In addition,
the axial gradients of interference may cause interference on pitching
moment for a long model. By introducing an axially distributed poros-
ity in the walls of a slotted tunnel, the elimination of pitching moment
and lift interferences was achieved in the experimental development of
walls for V/STOL testing (Ref. 1). It is necessary to search for a
theoretical optimum porosity distribution for the minimization of inter-
ference as the guideline for an experimental program.,

The first theoretical approach to the problem has been carried out
in Ref. 2 to reduce the interference in a two-dimensional perforated
tunnel by a gaussian type distribution of porosity with an approximate
method. Specifically, a system of integral equations was derived using
Fourier transform and convolution theorems and then solved by the
collocation method with a series form representing the unknown func-
tions. The selection of a gaussian distribution is strictly based on the
merits of mathematical simplicity. The reduction of interference is
achieved (Ref, 2} by using a simple singularity to represent the test
model. This has been extended to a finite chord airfoil to permit com-
parisons directly with experimental data (Ref. 3). However, the
approximate method is limited to certain porosity distributions. The
complete elimination of the magnitude and axial gradient of interference
requires a nongaussian porosity distribution. To provide such a solu-
tion, a numerical method for computing the interference has been devel-
oped to search for an optimum configuration in the present study. The
application of a modified method of Block Cyclic Reduction (Ref. 4) to
the lift interference computation is presented. The scheme to search
for an optimum configuration is discussed and extended to a finite air-
foil. The lift interference is calculated for an NACA 64-series airfoil
in an optimum configuration to demonstrate the achievement of mini-
mization of interference. The effect of test section length is briefly
examined.
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2.0 GENERAL ANALYSIS

The lift interference in a two-dimensional porous transonic tunnel
is formulated for tunnel walls with varying porosity distributions. The
optimum porosity distribution may then be obtained by judicious selec-
tion for a given application.

2.1 FORMULATION OF MATHEMATICAL PROBLEM

The field equation of an inviscid, irrotational fluid for subsonic
flow in terms of the perturbation velocity potential ® in X-Y coordinates
(Fig. 1) is

2 9290 + 329

ax? Y2

B

=0 (1)

For the boundary condition of the tunnel, the average mass flow is
assumed proportional to the pressure drop across the porous wall as

30 . 20

s tsy =0 at Y = th (2)

R(x)

where R(x) is the empirical constant, or porosity parameter, of the
porous wall and is a function of streamwise location.

MODEL IN A TUNNEL Y

RiX1¢x + ¢y =0
:—-—g————h———f—ﬁl MODEL
1 B gyt $yy®0 -— C—m =

$l-)=0 " ) 2n ﬁ(#.)-o L~ ?\
B i e S .
I ] = D220 x
: : rix)
e —— e s —— _—— o |

RIX) gy - $y = O

Figure 1. Boundary value problem for tunnel lift interference.
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Within the assumptions of linerarized theory, the perturbation
velocity potential may be divided into two parts as

® = ¢ + ¢ (3)

m
where ¢ is the interference potential caused by the presence of tunnel
walls and ¢, is the disturbance potential induced by a model. The
linearity of the field equation and boundary conditions in the normal-
ized coordinates x = X/Bh, y =Y/h gives

+ =0 (4)
ax2  ay? :
and
3¢ o0
R(x) 3¢ 3d _ R{x) m m -
3 b + ¥ - - ( 3 'Te + 35 ) y +]1 (5)

with the upstream and downstream conditions described as

¢(t=) = 0 (6)

The formulation is completed with the set of Egs. (4), (5), and (6).
The finite difference method will be used to solve this system. An
efficient numerical scheme is provided by the modification of Block
Cyclic Reduction to yield a solution of the finite difference equations.

2.2 FINITE DIFFERENCE EQUATIONS

To develop the finite difference equations, it is assumed that the
interference potential ¢ effectively becomes zero at a large finite dis-
tance from the model location. This distance will be denoted x*.

x*
3

Let N be any positive integer and let k be any nonnegative integer.

Consider the rectangular region

-x*
R =i,

IAn 1A
In A

X
y
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Define M = 2K. Let the region R be overlaid with a rectangular net
with spacings

e s oy N—l

where the mesh points in the x direction may be distributed as desired.
It will be required that x5 = -x* and xy; =x*%

In the y direction, §y = = and ¥y = jéy j = o0, %1,

==

For notational convenience, column vectors such as

]
|

will be denoted as

8 =col (u;, u,, . . - . uy)

and any NxN tridiagonal matrix K of the form

- _
by ¢

will be denoted by K =(a;, by, ci)N N
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Let the value of the solution of the finite difference equations at the
point (x;, yj) be denoted as ¢; ] and let

2 2
Using the centered second difference approximation for 7% and 3¢
as given in Ref. 5 for variable steps, the finite difference approxima-
tion to Eq. (4) on R becomes

( d>i+:|.,j _ ¢1rj + ¢1_1IJ
§x; (6x,+6x, ;) 0x; _16%, 8x; _ (Ox 40X, )
(8)
b, .., = 20, . + ¢,
4 i3+l i,3 i,j=1 _ 0
28y?
1 = 1' ----- ’ N-l

j = O,il’----, i(M-l)

C
®
-+
[+
|

2
L = 28y /[Gxi (5% +5xi_1]
- 2
;= -2 [1 + sy2/ (axiaxi_l]

2
; = 28y /[sxi_l (8% +6xi_1)]

o
n

Q
n

Since it is required that ¢ (-x*,y) =¢ (x* y) =0, there results
N § =qb0 j =0, j=0, £1,..., £M. Then Eq. (8) may be written

~

¢j+l + Agj + ?j-l =0
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where A is the matrix
A = (Ci’ by, ai) N-1 x N-1 (9)

The procedure along the boundaries y =+1 is as follows:

3p_(x,,+1) 3 (x.,%1)
Let13f=-(““1 t T, m 1 )

ex i oy

where Ti = B/R(xi) i=1,2,..., N—-1

On y =+1, the difference approximations given in Ref. 5 are again used
to approximate Eq. (5) resulting in

Pi®ivi,m 9 %5 m * Ti%io1,m
(10)
®i,m+1 T $i,M-1 +
+T. = B,
i 28y i

where P,
i

Gxi_l/ [Gxi (Gxi + Gxi_l)]

g =08%y = 8xy 1)/ (5x 8%y ;)

Q
I

H
[

and i = - &/ [5xi_l (Gxi + dxi_l)] .

Eq. (4) is also required to hold for y = +1 which gives

a

bimer T2 et Py b Mt oamt Py =0

Eliminating ‘f’i, M+1 from these two equations yields

T Gy = Eoy + £ (11)

10
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where E is the matrix

=1'. K - l X - l X - ]
E [z (rf - Tyey), 3 (af - Tyby)y 5 (PF - T30  Nop ¢ N-1

. +
with qI = 248y qi, p*i = 248y Py r‘J!'_ = 28y ri, f; -8y Bi

and where
T= (0' Tyr 0) N-1 x N-1°

In a similar manner it can be shown that on the boundary y =-1,

0w = Ebyt+tE - (12)

The set of finite difference equations (Egs. (8), (11), and (12)) is
readily solved for the determination of lift interference once the lift

potential is established.

3.0 LIFT INTERFERENCE

The lift interference factor is defined by

§ = S 1239
SCL U 9y

In particular, the factor along the centerline, y = 0, can be obtained

by
$1 = 9,
(13)

where ¢ ; - ¢ _1 can be computed by solving an N-1 system of equations
using the Modified Method of Block Cyclic Reduction which is described

in Appendixes A and B.

11
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3.1 SMALL CHORD AIRFOIL

In the first step, a simple vortex is chosen to represent the lift
model as

-
I
|
g
=]
E

(14)

A solution for the case of a wall with a uniform porosity distribution
has been obtained to check with the known analytical solution case and
is shown in Fig. 2. The second case, computed for an inverse gaus-
sion distribution of R/, is compared with results obtained by the
approximate method (Ref. 2) in Fig. 3. The agreement between the
results using the proposed technique and previous solutions for the
above cases indicates that the accuracy of the present numerical solu-
tion is satisfactory.

ANALYTICAL METHOD
L] PRESENT NUMERICAL METHOD

0.1 T T T T T T

LIFT INTERFERENCE FACTOR, 8

-0.3 1 1 1 1 1 i
-2.0 -1.5 -1.0 -05 o 0.5 .0 15 2.0

LONGITUDINAL DISTANCE ALONG TUNNEL CENTERLIP-QE, x/8h

Figure 2. Comparison of block cyclic reduction and analytic solutions
for walls with uniform porosity distribution.

3.2 OPTIMUM POROSITY DISTRIBUTION

The ideal porosity distribution for a tunnel wall is defined as that
which induces no lift interference anywhere in the test section. In the
mathematical sense, the upwash interference, 8¢ /3y, vanishes every-
where; or the interference potential is a trivial solution of the system

12
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—~—  APPROXIMATE METHOD
° PRESENT NUMERICAL METHOD

02 T T T T I 1

©
9
4
I
w
w ©
o
2
E 1\5\'_'_/1
- = R/ -
w-0.1 B
x
W
ot
Z.02f KJ -
'—
w
- x/Bh
-0.3 1 1 1 1 1 |
-2.0 -1.5 -1.0 -0.5 (o] 05 1.0 1.5 2.0

LONGITUDINAL DISTANCE ALONG TUNNEL CENTERLINE, x/8h

Figure 3. Comparison of block cyclic reduction and approximate solutions
for walls with inverse gaussian porosity distribution.

of Egs. (4), (5), and (6). This solution can be obtained by observation
as the right-hand side of Eq. (5) becomes zero and substituting Eq. (4)

then
9 3¢
. m m

= X

(15)

However, the porosity parameter for the perforated wall R/8 can only
have a positive value because the mass flow is always from the high-
pressure to the low-pressure side. Thus, a distribution of R(x)/B is
selected and shown in Fig. 4 and Table 1 denoted by Configuration C as

(16)

X/Bh X 20
R(x)/B = {

X <0

to evaluate the interference. The lift interference factor for Configura-
tion C has been calculated and is shown in Fig. 5. The interference fac-
tors for three additional Configurations D, E, and F (Fig. 4 and Table 1)

13
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POROSITY DISTRIBUTION FUNCTIONS, R/B

CONFIG B

WLL A

' 1 Il

-3 -2 -1

2 3 4
LONGITUDINAL DISTANCE ALONG TUNNEL CENTERLINE, x/8h

0

5 6

Figure 4. Wall configuration with various porosity distributions.

Table 1. Wall Porosity Distribution, R/8 for Various Configurations

—

ONFIG[ C i) E F
X
-17.00 | 0.000 | 0.000 | 0.000 | 0.000
0 00 1 [
025 | 0250
050 | 0500 | 0.250
0.75 | 0750 0.500 | 0.250
1.00 | 1 000 1.000 | 0.500 0 200
1.25 | 1.250 1.250 | 0.8%0 0.450
1 50 , 1.500 1.500 1.200 0.700
1.75 | 1750 1.750 1.550 0.975
2.00 | 2000 2.000 2.000 1.300
225 | 2250 2.250 2250 1.600
2.50 | 2500 2.500 2.500 1.950
2.75 | 2750 2.750 2.750 2.375
3.00 | 3.000 3.000 3.000 2.850
3.25 | 3250 3250 3.250 3.250
400 | 4000 4.000 4.000 4.000
5.00 | 5.000 5.000 5000 5.000
17.00 | 17000 | 17000 | 17000 | 17.000

14
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006 T T T T T T

004} ]

002}

CONFIG| F

-002]

004

LIFT INTERFERENCE FACTOR, 8

-008|

-008 1 ,/ 1 1 1

-20 -1.5 -10 -05 0 05 1.0 15 20
LONGITUDINAL DISTANCE ALONG TUNNEL CENTERLINE, x/8h

Figure b. Lift interference on a small chord airfoil in tunnels
with various wall configurations.

with a slight variation from Configuration C have been calculated and
are presented in Fig. 5. Also plotted in Fig. 5 are results for walls with
uniform (Configuration A) and inverse gaussian (Configuration B) poros-
ity distributions. It seems that Configurations C and D give, overall,
less interference.

3.3 FINITE CHORD AIRFOIL CASE
For a finite chord airfoil with camber and incidence, a discrete

distribution of vortices can be used as

= -1 . -l __ ¥
O = 3o > aj(cj) AT ¢ tan T (17)

15
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The results for the NACA 64-series airfoil with a chord C = 0.5/8h
are presented in Fig. 6 and indicate that Configurations D and E exhibit
the most satisfactory distribution of porosity to obtain the minimum
interference factor.

0.2 T T T T T T

LIFT INTERFERENCE FACTOR, 8

02 [czan= 05 i

-0.3 1 1 L 1 1 1
-20 -5 -1.0 -05 (o] 05 1.0 1.5 2.0

LONGITUDINAL DISTANCE ALONG TUNNEL CENTERLINE, x/8h

Figure 6. Lift interference on a finite chord airfoil in tunnels
with various wall configurations.

3.4 EFFECT OF TEST SECTION LENGTH

Most analytical approaches in wind tunnel theory have assumed the
length of test section to be infinite for mathematical simplicity. The
effect of test section length on the lift interference is of interest since
the actual tunnel test section length is usually about two to three times
the test section height. The versatility of the present approach can be
applied to examine the effect of test section length. For the uniform
porosity distribution case, the comparison of lift interference of a
finite test section as -2 < x/8h < 3 (upstream and downstream regions
using solid walls) with the infinite test section is shown in Fig. 7 and
indicates the effect on the interference in the region x/3h > 2, It can
be seen that the assumption of an infinite length test section for the
calculation of interference in the neighborhood of the model appears
reasonable.

16



AEDC-TR-75-98

—_— INFINITE LENGTH TUNNEL
—_—— FINITE LENGTH TUNNEL (-2 s x/8h <3)

o

I I

R/B = 0.250

o

)
o
)

LIFT INTERFERENCE FACTOR, 3
]
o

-0.3 ] L ] | 1 | Ao _.I

740 -3.0 .20 -1.0 ) 1.0 2.0 3.0 4.0
LONGITUDINAL DISTANCE ALONG TUNNEL CENTERLINE, x/8h

Figure 7. Effect of test section length on lift interference.

4.0 CONCLUDING REMARKS

An efficient numerical scheme has been developed by a modification
to the Block Cyclic Reduction Method for computing lift interference in
a wind tunnel with an arbitrary distribution of wall porosity. A compar-
ison with other available analytical and approximate solutions has demon-
strated the accuracy of the present numerical method. The optimum
porosity distribution to minimize interference is obtained by the varia-
tion of the ideal mathematical configuration which produces exact
interference-free condition. The minimization of interference is also
presented for a finite chord airfoil in the optimum wall configurations.

The optimum wall porosity configurations have been calculated for

both a simplified ideal airfoil and a finite chord airfoil. The effect of
test section length has been also studied.
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APPENDIX A
METHOD OF BLOCK CYCLIC REDUCTION

Consider the problem of solving the finite difference analog to
Laplace's equation with the boundary conditions

p(=x*,y) = ¢(x*, y) =0 —l_gyil
(A-1)

+
p(x,tl) = g™ (x) -x*¥< x < x*
+ . . .
and where g (x) are given functions with
+ +
g (x*) = g7 (-x*) = 0.
It is well known that replacing Laplace's equation on the region

R by a centered second difference approximation and imposing the
boundary conditions given in Eq. (A-1) yields the problem

D 9: Y (A_z)

~

where D is the (2M-1) (N-1) x (2M-1) (N-1) real symmetric matrix
which has the block tridiagonal form

D= (I, A I)yy 1 x 2M-1

and A is the matrix defined in Eq. (9).
- The vector ¢ will be given in partitioned form as

¢ = col{dy 10 Oy pr ---r Sp) -
Likewise, the vector y is given by

y = col{=¢y, 0, ..oy 0y =9_p) -

In their description of Block Cyclic Reduction, Buzbee, Golub, and
Nielson {Ref. 8) first write Eq. (A-2) as

19
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Ady-1 * %2 = Yy (A-3a)
$o-m t P01y =Y M- (A-3c)

Then for j =£-1, £, £+1 where £ =-M+2, ..., M-2, Eq. (A-3Db) can be
written

P42 * R4y * Yy =0

n
(=

P41 TR0+ 05

by * ROy g tOp o, =0 .

~

Then multiplying the middle equation by -A and adding the three
equations yields

2 -
Po42 + (QI-A7) ¢, + ¢, 5, =0
for ¢ = - M+2, ... , M=2 ,

Buneman, as described by Hockney (Ref. 7) proceeds by these steps
and then reapplies the method. Thus with

A = 21-22 ,
Pova t R10040 9y =0
?2+2 + Al?ﬂ + ?2_2 ' =0

where 2 = - M+4, ... , M-4

and again, multiplying the middle equation by -A, and adding yields
d,.4 + (21-22)9, + 9, _, = 0
~2+4 1 ~2: ~2|-4 *

Then repeating the process of cyclic reduction recursively, Buneman
obtains for the it!! recursion

20
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¢ . +BA.0.+¢ . =0
j#2t 03 =52t
2
A, = 21I-A,
i i-1 (A-4)
A0=A

Hence, when j =0 and i =k there results

¢y t Bgbo * Oy =0
so that
do = = g (o + &) -

d)M and -?-M are known values from Eq. (A-1); hence, 9_0 may be

found by inverting an (N-1) x (N-1) matrix. Once ¢ is known, the
method may be repeated on the regions

(x,y) - x* ¥ x < x* (x,y) - x* < x < x*l
RU = and RL =
0<yzsl -l2yz0
solving for QM and ?_M .
2 2

These steps are repeated until all the vectors gﬁ £ =0, 21, ..., *(M-1)
are found. Each step requires finding the solution to N-1 linear
equations.
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APPENDIX B
MODIFICATION OF BLOCK CYCLIC REDUCTION

The set of finite difference equations (Eqgs. (8), (11), and (12}) was
developed in Section 2.2 and is given by

¢j+1 + Agj + ‘I.’j-l =0

j=0,%1, ... , (M-1) (B-1)

Ty = Bby + £ (B-2a)

Té; = B¢y + £ . (B-2b)

~

It will be shown that the vectors QM and EI'—M can be found as the solu-
tion to a system of 2(N-1) linear equations.

At this point, a change of notation will be made for convenience.

Let

YZ+M = 22 !l = -M' s e [} M L (B-3)

Applying Eq. (B-3) to Eq. (A-4) results in

v . + A, V. + Vv . =0
~ye2tam L VI sy o1y (B-4)
Theorem |
Veel1 = Fp Yy + G Y2+2n (B-5)
where

n=1' 2, s oo ’K+l

and £ is such that

£>0and 2" + 2 < 2M ,
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where
F_ =F -G A"l o= 2 K+l
n n-1 n-1 "n-1 roere e (B-6)
G.=-G al n=2 K+1 (B-17)
n n-1 “n-1 ' e
and where
N § - -1
Fl = Ao ’ Gl = =- Ao .

Proof
In Eq. (B-4)letj=1-m+£andi=0.

Then
Vosg ¥ B3 Vi vV -

hence 1
Vo4l = = Ro (Vg + Vp.0)

=F, V, + Gl

1 Vs Vo+2

so the theorem holds for n =1. These steps would complete the proof
for K =0 so now assume K > 0 and suppose Eq. (B-3) holds for n = L,
L=1, ..., K.

Then
v =F V, + G, V
~2+1 L -2 L "'2.+2L

(B-8)
where £ is such that

2>0and 2 + 2 <M.

In Eq. (B-4) then, letj =21 - 2K 4+ 2 and let i = L.

Then

v + AV +V, =0
Yu+l,, AI.~2L+2 Ve
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or

-1
v = - V, +V . )
% Ay (~z ~2L+1+2) (B-9)

Substituting Eq. (B-9) into the inductive hypothesis Eq. (B-8) gives
Vorr = Fp Y + G [ AL (V ty L+1+2ﬂ

-1 -1
(FL = G, Ay )Yz Gp, Ap Y2

L+l+z

F vV, + G v
L+l ~2% L+l ~2L+l-h2.

and hence the proof is complete.
Then with n =K+1 and £ =0. Eq. (B-5) becomes

Vy =F

vy Vy, + G

K+1 Y0 R+l V. K+1

2 (B-10)

F Vo + G

R+1 Yo R+1 VoM °

In a similar manner, it may be shown that
Vou-1 = Frex You * Cg41 Yo - (B-11)

Applying Eq. (B-3) to Egs. (B-10) and (B-11) gives

= F

P1-m = T+l %-m * Sk41 I (B-12)

$m-1 = Fgre1 ®m * Gk41 S-m -

Substituting Eqgs. (B-10) and (B-11) into Egs. (B-2a) and (B-2b) respec-
tively, yields

- +
T[Fre1 M * Gge1 $-m] = Edy *+ £ (B-14)
T[Frer $om ¥ Cxan fu] = By * £ (B-15)
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which may be written in Block Matrix form as

TF - E G

K+1

16
thh

K+1 M

(B-186)

G - E

K+1 TF

-6
tHh

R+l -M
It will be noted that Eq. (B-16) is a linear system of 2(N-1) equa-
tions which can be solved for ‘bM and Q-M' Once these vectors are

known, the problem becomes one of the Dirchlet type which can be
solved by the methods of Appendix A,

In Theorem I, let n =K and £ = M; then Eq. (B-5) becomes

Vel = Fx Y+ Cg Vou - (B-17)

Also, writing Eq. (B-4) with j =0, i =K and again.noting that 2K = M
results in

+AV+V =0

VoM Yo

or

vy = = B¢ (V + Vou - (B-18)

Substituting Eq. (B-18) into Eq. (B-17) gives

_ _ .=l
TS FK[ Ag (Vo + qu)] + Gy Vom

-1 -1
= (Gg - Fg Ag )Vay ~ Fx 3¢ VY -

Letting

— -1
S-—G-]E‘KAK and W = FKAK

gives + WYy,

Vel = 5 Vou
and then by use of Eq. (B-3)

91 = Sty * Wo_y
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In a similar manner it is found that

0oy T WOy * SOy -

-~

Then

¢l - ¢_l = (S-W) (?M - Q_M) . (B‘lg)

Subtracting Eq. (B-15) from Eq. (B-14) results in

+ -

(TF = TGy, ~ E) (9 = ¢ ) = (£ = £)

K+1
so that

_ _ _ -1 + - _
¢1 - ¢-1 = (8-W) (TFK+l TGK+1 E) (f f ) (B-20)

hence, ¢; - ¢_; can be computed by solving an N-1 system of equa-
tions and the interference factor in Eq. (13) is obtained.
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APPENDIX C i
METHOD OF EVALUATION

The evaluation of the lift interference by use of Eq. (B-20) is
greatly hindered by the number of operations required to evaluate the
recursion matrices Fg41 and Gg+1. However, these computations
may be greatly simplified by a simple application of induction and it
is shown by use of Egs. (B-6) and (B-7) that

= (-1 K -1 C-1
and
zK
F, = G
K 4=1 L
so that
K+1
Fge1 ™ a1 = 251 Gy = Gge1 = Fg -
Since S - W =Gk, Eq. (B-20) becomes
_ _ -1, + _ -
0y = 81 = Gg(TR - BYTN(E - £

Now consider the matrix A given by Eq.- (9).
Define the matrix

D= [0, a5, 0]y 1 4 N1

dj/cj+1, j = 1' .oy N-ZQ (C-z)

where d1 1 and dj+l = a

3

Define £ = Dé A D—§= [é , 1; (C-3)

if ai] N-1 x N-1

It
o
K

]
—
Z

!
—

h b,
where b,

~n
and C, = a. = _[c. a.
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Then A is a real symmetric matrix for which many well known computer
programs can be used to -compute the eigenvalues and eigenvectors Aj
and X5 - j=1, ..., N-1,

From Eq. (C-3), A\ and A are seen to be similar matrices hence
Ajand D” 1 2)5]- form an eigenvalue, eigenvector pair for A.

Let X be the unitary matrix whose columns are the set of ortho-
normal eigenvectors of A.

-1 2

Then X A X =A

where A = [0, Ai’ O]N-l x N-1 °

Hence Q'1 A Q=A where @ =D'1,2X.

Now suppose there exists a matrix Qi which diagonalizes Ay so that
-1 _
Qx~ Ak Qk = Ak.

Then since Ak+l = 2T - A]i ’
Ot By 9 = 9 2T o - ot AL o
= 2T - 0;1 A O Q;l AL Q
= 2I - 1\]2c .

Hence, Qi diagonalizes both Qi and Qyk41. Then dropping the subscript
on Q gives

so that from Eq. (C-1)

G, = (-1)¥

-1
k By =-+- By A))

= 1% n_, aton, 0t loae™h

k

D @n_; -eeehy A Q)
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But Q! =(D"1/2x)"1 - x"1 p1/2

and since X is a unitary matrix,

-1 _ TDi

Q = X . So finally,

= (-1k (-2 T K%
Gk—(l) (D xkk_l....kl on D®) .

Hence the work of computing Gi is simplified since most matrices
involved are diagonal matrices.

It will be noted that Gy and Fi are functions only of the mesh and
hence the interference may be computed via Eq. (C-2) for many dif-
ferent porosity distributions T without having to recompute these

matrices.
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APPENDIX D
COMPUTER PROGRAM

Program Description
MAIN

The main program is for control purposes. SETTUP should be
called immediately. TFIX is called whenever a new porosity distribu-
tion is desired. EVALUS is called to compute the lift interference.

In the sample listing, the interference is computed for the four poros-
ity distributions given in Table 1.

Function B is a user-supplied routine and is used to compute

RUG) aem ™y, 21 gem %y, 3D

B oxX = oy

t
B L) = -
1

This equation is similar to the one following Eq. (9). It need be
rewritten only when the model velocity potential is changed.

CHOLES

Subroutine CHOLES solves the linear system given by Eq. (C-2)
by the method of matrix factorization.

DFFIX

Subroutine DFFIX computes the vector £*- .

EVALUS
This subroutine evaluates the finite difference coefficients, con-

structs the matrix (TFy - E) Gk ,» and calls subroutine CHOLES to
solve Eq. {C-2).

FFIX

This subroutine constructs the matrices F) and Gy by the methods
described in Appendix C.
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HDIAG

Subroutﬁine HDIAG computes the eigenvectors and eigenvalues of
the matrix A defined by Eq. (C-3).

MESH

This user-supplied subroutine is used to fill the X and DX arrays.
Note that a value is assigned to X(o), namely X(o) = -X*

MULT and MULT2

These routines perform the FORTRAN matrix replacements
B = AB and A = AB, respectively.

SETTUP

This is a user-supplied routine used to initialize all program
constants.

TFIX

TFIX loads the vector T(x;) by calling TFUNC.

TFUNC
This is a user-supplied routine used to evaluate the function.
TFUNC (X) = R(X)/8

It should be noted here that in the program the array T contains values
of R/B and not B/R as given following Eq. (9).
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MAIN

IMPLICIT REAL*8{A-H,0-2)

COMMON T{49),VEC(49]),0UM{49,50)
COMMON/XX/ XD,y X{ 50)
COMMON/IL1/NosM,N1sM1,K
COMMON/CONTRL/IC

CALL SETTUP

00 50 ICC=1,4

IC=5-1CC

CALL TF1X

CALL EVALUSB

DO 39 l=1,N1

39 WRITE(64 1031 +X(1)sTC(I),DUMTI,N)
10 FORMAT(SXs "1=291395Xe "' X="4FL0e3 45X +*BETA/RO=2,D16.895X,
*'DELYTA=',D16.8)
50 CONTINUE
STOP
END

DOUBLE PRECISION FUNCTION B(J)
IMPLICIT REAL*B(A-H,0-2)
COMMON/RL1/DX0yDX{ 45) yDUMLS) ¢ XINF P12
COMMON/XX/ XD E X{50)

COMMON T(49)

COMMON/BROWN/GAM

I=1ABS{J)

X=EX(I)

Y=1/7J

B=(=Y*T{ 1) +V*X) /{X*X+1.D0) *GAM/P]2
RETURN

END
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CHOLES

SUBROUTINE CHOLES(AsN NV, ID1l,ED2 ¢MATSYM)

REAL#8 A{ iDL,y ID2) o SUM,TEMP

"M=N NV

NARD=N+1

IF(A(1ls1)NE.Q.0) GO TO 47
D0 37 J=2,N

IFtAC(J,1).EQ.0.0) GO TO 37

37 CONTINUE
GU TO 54321
27 DO 57 K=1.M
TEMP=A(IFLIP,K)
___ACIFLIPKI=A( 1K)
TTTACLK)=TEMP
§7 CONTINUE
47 DO 2 J=2,M
_ AClyJ)=A(1.J)7A01,1)
T2 CONTINUF
DO 6 I=2,N
DO 7 J=2+M
IF(MATSYM.EQ.O0)GO YO 49
IF{1-0)69,68,67
49 IF(J.6T.1)6GD TO_69
68 K=J~1
SUM=0,0
po0 3 1IR=1,K
SUM=SUM+A{ I, IR)*A( 1R, J)
3 CONTINUE
AtT,J)=A11,J)~-SUM
GO Y0 7
69 K=1-1
T SuUM=0.0
D0 4 IR=1,K
SUM=SUM+A( I, IR)*A( IR J)
4 CONTINUE _
TTTEUALL,17.8G.0.0) GO TD 54321
ACT,d)=(AlL1,J)-SUM)/A(T,1}
TGO Y07
67 AtI.J)=A0Js10%A0J0J)
7 CONTINUE
_6 CONVINUE
D0 52 NPROB=NARD M
DO 52 K=2,N
I=N+1-K
SUM=0.0
LL=1+]
___ D0 51 IR=LL,N
SUM=SUM#A{ [, IRI=A{ [R, NPROB)
51 CONTINUE_ _
T A(I,NPROBI=A (I +NPROB}-SUM
52 CONTINUE
GO TO 12345
54321 N==-1
12345 RETURN
END
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DFFIX

SUBRJUTINE DFFIX
IMPLICIT REAL*8({A-H,0-2)
CGMMON T(49),VEC(4S)
COMMON/I 1/NyMyN]
COMMON/RL/DX040X(49),DY

DU 1 I=14N1

1 VEC(L)==-DY%(B(i)-B(-1]))
RETURN
END

100

65

20

EVALUS

SUBROUTINE EVALUS
IMPLICIT REAL*8(A~H,0-2)

COMMON T(49),VEC{4S) 4DUMI49,50) ¢FK(49,49) yAPROD (49 +49)
COMMON /R 1/DX09DX(45) 30Y BETA ROy WyCS yXINF,P12,Y,0¥2
COMMON/I1/NyMgNL oMLK oID1,ED241Z N2

COMMON /ABC /A(49) ¢B(49) ,C{49)

CALL DFFIX

DU 1 I=1,N1

N0 1 J=1,4N1

DUML T4 d)=FK(1,J)
Q1=DY2#(DX{1}-DX(EZ)}/(DX{1)*DX(IZ))

P L=DY23DX( IZ}/(OX{L)*(DX{1}+DX(1Z)))

DUM( 1y 1)=DUM{1,1)=.500%( T(1)*Q1-8(1))

DUM( 1, 2)=DUM{Ls2)=-.5D0%(T(L1) #P1-A(L))

DO 65 [=2,N2
QI=DY2*(OX( 1)-DX{ I-1))/(DX(1)#DX(1~1))
P1=DY2%DX( I-1)/(DX([) *(DX(I)+DX{I~1)))
R1==DY2%DX{ 1) /(DX{ [~1)*(DX{1)4DX(i-1)))
DUMC T, I~1)=DUM{T,E-1)-.5D0%({T(1)*RI=-C(I))
DUM( T, [)=DUM(I41)-.5D0%(T(1)*QI-B(1))

DUM( 1o I#1)=DUM{ Lo [+1)=.5D0%(T{L}*PI-A(L})
R1==DY2¥DX(N1)/{DX({N2)*(DX(NL) +DX(N2)))
QL=DY2%(DX(N1)=DX(N2))/(DX{NL) *DX(N2))
DUMINL,N2)=DUM(NL,N2)~.500%( T{NL)*RL=C{NL))
DUM(N1,N1)=DUM{N1,N1)~.500%{ T{N1)*QL-B(NL))
CALL MULT2(DUM,APROD)

pU 20 I=1,Nl

DUM{ T4NI=VEC(I)

CALL CHOLES{DUM,NLyl,1D1,1D2,0)

00 & I=1,N1

DUM( T+N)=DUM(I¢N)/(2.00%DY)

RETURN

END
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FFIX

SUBROUTINE FFIX

IMPLICIT REAL*8{A-H,0-~-2)

COMMON T(49)+VEC(49) ¢TMP(49,50} sFK(49:+49) APROD(49:49)
COMMON/R1/DX0¢DX{ 4G)+DYDUM(5),P12
DIMENS ION D{49),DG(49)+DF(49)
COMMON/I1/NeMyNL oeM1l oK
COMMON/ABC 7A(49) 4B8(49) ,C{49)
DY2=2.D00*%DY%DY

00 20 [=14N]
A(I)=DY2/7(DX(1)}*(DX{(I)+DX(I-1)))
B{I)=-2.D0-DY2/({DX{1)*DX{[-1))
ClI)=DY2/7(OX{I-L)={DX{TI )+DX(I-1)}])
D{l)=1.D0

N2=N1-1

DO 30 I=1.N2
DIT+)=A(])*D(1)/C{i+1)

00 60 I=1l,Nl

DO 60 J=1l4N1]

FK‘I'J’=0.DO

FK({1l,1)=B(1)

DO 40 [=2yN1

FK{l,I}=B(1)

FK(I, I-1)=DSQRT(C(I}*A(I-1))
FK{I-1leI)=FK(1,1-1)

I1EGN=Q

CALL HDIAG(FK¢Nl141EGN,TMP,NRN)

DO 50 I=]1,N1

VEC{ [)=1.D0/DSQRTID(I))
D(IY¥=FK(I,1)

D0 1 I=1,N1

- DF(1)=0.D0

DG(I)=1.00

DO 2 IK=1,K

D0 2 l=1,N1
DG(I)=DI(I)*DG(I)
DF(I)=(~-1)**IK/DGLI)+OF(I)
D{1)=2.D0=-D(]}%%x2
EE=(-1)*%xK

DO 10 I=1l,Nl

10 DG(1)=EE*DG(1)

501

DO 501 J=1,N1

DO 501 I=1,N1
APROD(I,J)=TMP( I,J)*DG( J)
FKUI,J)=TMP(1.J)}*DF(J)

DO 502 1=1,Nl

00 502 J=1,N1

APROD( Lo J)=VEC( 1) *APROD (1 4J)
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502

503

504

FFIX

FRUETyd )=VECL TI*FKI T, J)
DO 503 I=24N1

IMl=]-1

DO 503 J=1,1IM1
TEMP=TMP(I,J)

TMPL I, J)}=TMP(J, 1)
TMP(J 4 I)=TEMP

CALL MULT2{APROD,TMP)
CALL MULTZ2(FK TMP)

DU 504 J=1,N1
TOM=1.DO/VEC(J)

DO 504 1=1,4N1

APROD( I+J)=APRODII »J)*TOM
FK{lsJI=FK(1J)*TOM
RETURN

EMND
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HDIAG

SUBROUTINE HDIAG (HeN,IEGENsUsNR)
SUBROUTINE HDiAG.

PROGRAMED BY F. J. CARBATO AND M.MERWIN OF THE MIT
COMPUTATION CENTER « . '

THIS SUBROUTINE COMPUTES THE EIGENVALUES AND EIGENVECTORS
OF A REAL SYMMETRIC MATRIX, He OF ORDER_N_{ WHERE N _MUST_BE LESS
THAN 510, AND PLACES THE EIGENVALUES IN THE DIAGONAL ELEMENTS OF
THME MATRIX H, AND PLACES THE EIGENVECTORS (NORMALIZED ) IN THE
COLUMNS OF THE MATRIX U. IEGEN IS SET AS 1 IF ONLY EIGENVALUES
ARE DESIRED,AND IS SET TO O WHEN VECTORS ARE REQUIRED. NR CON-

TAINS THE NUMBER OF ROTATIONS DONE.

Hy Ny IENGEN, U, AND NR OF THE ARGUMENT LIST ARE DUMMY VARIABLES
AND MAY BE NAMED DIFFERENTLY IN THE CALLING OF THE SUBROUT INE.

SUBROUTINE PLACES COMPUTER iN _THE FLQATINw TRAP MGODE S
THE SUBROUTINE OPERATES ONLY ON THE ELEMENTS OF H THAT ARE 10 THE
RIGHT OF THE MAIN DIAGONAL. THUS, ONLY_ A TRIANGULAR
SECTION NEED BE STORED IN THE ARRAY He
IMPLICIT REAL#8(A~H,0-2)
DIMENSTON H49,4901,U(40,491,X(491,10(49)
2 FORMAT{14H MAX OFF DlAL=4Fl4.T7+3nNR=,13)
2001 FORMAT (LX, BE1S. 8)
2002 FORMAT {18H_ORTHOGONAL MATRIX)
T 2003 FORMAT{15H ROTATED MATRIX)
SIGNIX 1o X2)=DSIGN{ X1, X2)
SQRT{X$=DSQRT( X}
ABS{X)=DABS(X)
TF(TEGEN.NE.O) GO 10 15
10 0C 14 I=1,N
T 00 14 J=1,N
IFt I-J .NE.O) GO TO 12
11 U(1,J0=1.0
— __ 60 70 1é
{2 U(1,01=0.0
14 CONTINUE
I5NR = 0
IF(N=-1.LE.0) GO YO 1000
3 SCAN FOR LAKGEST OFF-DIAGONAL ELEMENT IN EACH ROW
C X({I) CONTAINS LARGEST ELEMENT IN ITH_ ROW
"€ 1a{i7 HOLDS SECOND SUBSCRIPT DEF iNiNw POSITION OF ELEMENT
17 _NM11=N-1
DO 30 ¥=1,NNI1
X(1) = 0.0
PLI=T+1
DO 30 J=IPLI,N ’
T IRUXCT)EABS(HE [7J) 10T 0.0) GO T0 30
20 X{I)=ABS(H{1,J))

alo oo ale alo oo oo ale efo olo ol

E— TR X
30 CONTINUE _ L
c SET INDICATOR FUR SHUT-OFF.RAPS2%%-27 ,NR=NO. OF ROTATIONS
RAP=7,4505805960-9
HDTEST=1.0D38
c FIND MAXIMUM OF X{I) S FOR PIVOT ELEMENT AND
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HDTAG

Cc TEST FOR END OF PROBLEM
40 D0 70 I=1,NMI1
IF(I-1.LE.O0) GO TO &0
60 XMAX=X(I}
IPIv=1
JPIV=1Q(1)
70 CONTINUE
C IS MAX. X{I) EQUAL TO ZERUy IF LESS THAN HDTEST, REVISE HDTEST
JFIXMAX.LE.O0.0) GO TO L1002
80 IF(HDTEST.LE.O0.0) GO TO 90
85 IF{XYAX-HDTEST.GT.0.0) GO TO 148
T 90 HDIMIN = ABS( H(ls1) )
DO 110 I=2,N _ __
IFIHDIMIN- A8S{ H({I,I1) J.LEs 0.0} GO TO 110
100 HDIMIN=ABS( H{I1,I} }
110 CONTINUE
HOTEST = HDIMIN#RAP_

[ RETURN TF MAX.H{T¢JILESS THAN{2##=2T7) ABS(HIK,KI=-MIN)
IF{HNDTEST-XMAX.LE-0.0)L0 TO 1002
148 NR = NR+1
C _COMPUTE TANGENT, SINE AND COSINE ¢HUI ol),H{Jy )
150 TANGL=SIUN{ 2.0y (HELPIVIPIVI=HIJPIV,JPIVIJ)OH(IPIV,JPIV}/ (ABS (H(]
lPIV.lPIVl H{JP IV, JPIV) }#+SQRTIIHIIPIV IPIVI-HIJPIV,sJPIV))I*%2¢4.0%H
T 2U1PIV,UPIV)e82) )
COSINF=1.0/SQRT{ 1. 0rTANGE®*2)

SINE=TANG*COSINE
HI I=H{IPIV,1PIV)

H{IPIV, IPLV)=COSINE**2%({HII* TANLC®(2, SH{IPLV,JPIV) ¢TANG* R (JP IV,
WPIVI))

T T T HGIP IV JPTVI=COSINE® S 26 (H(JPI Vs JPIV)=TANG* (2. SH{IPIV, JPLIV)~T ANG*H
)y
"HIIPIV,JPTIV]I=0.0

c PSEUDD RANK THE EIGENVALUES

C _ ADJUST SINE AND COS FOR COMPUTATION OF H(IK) AND U(IK]
_EF(HUIPIV, IPIV)I-HUJPIV,JPIV) cGE.0.0) GO TO 153
TTTI52 HTEMP = H(IPIV, TPIV)
HUIPIV,IPIV) = HEJPIV,JPIV)

HIJP [V, JPIV) = HTEMP
c RECOMPUTE. SINE AND CQOS

HTEMP = SICN(1.0y —SINE) * CCSINE
__COSINE = ABS_(SINE)

SINE = HTEMP

153 CONTINUE

INSPECT THE IQS BETWEEN L1#1 AND N-1 TO DETERMINE

c
c WHETHER A NEW MAXIMUM VALUE_SHOULD BE COMPUTED S INCE
c THE PRESENT MAKIMUM IS IN THE [ OR J ROW.
PO 350 I = L,NMIL _
IF(1-IPIV.EQ.Q) GO TO 350
__IF(I-IPIV.LT. 0 ) GO 7O 210_
T200 IFUI-JPIV.EQ. 0 ) wO T0O 350"
210 IF(10(1)-IPIV.EQ. 0) GO TQ 240
230 IF(IQ([)-JPIV.NE. O ) GO TO 350
_240 K = IQ(1)
250 HTEMP = H(T,K}
HiI,K) = 0.0
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HD1AG

IPLY = 1+]

XLI) = 0.0

SEARCH IN DEPLETED ROW FOR NEW MAXIMUM
DO 320 J = 1IPLL,N

1
0
1

300

IF{ XC1)-ABST H{I+J) )eGTe 0.0) GO TO 320
X(tI) = ABS({ntl.J)}

320

0{1 = J
CONT INUE

350

H(1,K) = HTEMP
CONTINUE

ol

X{Iriv) = 0.0
X{JPIV) = 0.0

' CHANGE THE OTHER ELEMENTS OF H

00 530 I = 1,N

IFUI-1PIV.EQ. O } GO TO 530
IF{I-1PIV.GT. O ) GO TO 420

370

380

HTEMP = HI 1, IPIV)
HUILIPIV) = COSINE®HTEMP + SINE#H(1,JPIV)

IFCX{TY = ABS{ HUI,IPTV) )e.GE. 0.0 ) GO TO 390
X(1) = ABS( HLI,IPIV) )

390

400

420

IQII) = IPILV
Hi{lg JPIV) = ~SINE®*HTEMP + COSINE®HI(] ,J4P1V)

IFC Xt1) - ABS{ HUI,JPIV) ).GE. 0.0 ) GO TO 530
X{I) = ABS( HUI,JPIV) )

1(1) = JP1V
60 Y0 530
1fF{ [-JPIV.EQ. 0 ) GO TO 530
1€ I-JPIV.GT. O ) GO TU 480

440

430

450

HTEMP = HCIPIV,1)
H{IPIV,1) = COSINESHTEMP + stnegngl_;gj_g
IF( XCIPIVY = ABSI A(IPIV,I} ).GE. 0.0 ) GO TO 450
X(IPIV) = ABSL H{IPIV,1) )

Q(IPTV) = 1

H(IsJPIV) = =SINE®*ATEMP + COSINE*H (L ,JP1V)

IFt X(1) — ABS{ HtI,JPIV} ).GE. 0.0 ) GO TO 530
IFU X[1) - ABSU -HUI.JPIV} JoLTs 0.0 } GO TO 400

480

493

HTEMP = H(IPIV,I)
H{IP IV, 1) = COSINE*HTEMP ¢ SINE*H(JPLV,1)

TF( XUIPIVI = ABSC HOIPIV,I) ).GE. 0.0 § GC TOQ 500
X{IPiV) = ABSE HIIPIV.I) }

500
510

530

1Q(IPIV) = |
HIJPIV,I) = —SINESHTEMP + COSINE®H(JPIV,1)

TFCX(UPIVI = ABST RIJPIV,1) J.uELD.0) GO TO 530
X{JPIV) = ABSI HUJPIV,I1) )

I0(IPIVY =1
CONTINUE

T 540 DI

550

TEST FOR COMPUTATION OF EIGENVECTORS
___IF{IEGEN.NE.O) GO TO 40

DO 550 1 = 1.N
MTEMP = U(I,IPIV)

{1, [PIV) = COSINESHTEMP ¢ SINE*U(I,JPIV)

Ul L[4 JPIV) = ~SINE*HTEMP+C OSINE*U(]I (JPLV)

_1002
~1000

GO 10 40
_CONT INUE
RETURN
END
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ME SH

SUBRUUTINE MESH
IMPLICIT REAL*8(A-H,0-1)
COMMON/RL/DXOyDX{49) 4DY,BETA 4RU,C4CS s XINF
COMMON/T 1/NyMyNI1 '
COMMON/XX/ XD, X{ 50)
1Z7=0
X{IZ)=—-XINF
X{N)=XINF
DO 1 I=1,5
1 XCI)==XINF+1%3,00
DO 2 I=64944
2 X{1)==5,D0+({1I-5)1%,25D0
DO 3 [=45,49
3 X(I)=5.00+{ [-45)*3,D0
DO 4 I=1Z,.N1l
G DX(I)=X(I+1)}=-X(T)
RETURN
END

MULT

SUBROUTINE MULT(A,B)
IMPLICIT REAL*8(A-H,0-2)
COMMON/I1/NsM,N1
DIMENS ION A{49,1)+B(4Fy1)TEMP(49)
DO L J=1sN1
D0 2 I=1,N1
SUM=0.D0
DO 3 K=1,Nl
3 SUM=SUM+A(1+K)*B(K ,J)
2 TEMP{1}=SUM
DO 1 I=1l.Nl
L B(l,JI=TEMP( I}
RETURN
END
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MUL T2

SUBROUTINE MULTZ2(A,8)
IMPLICIT REAL*8{A-H,0-1)}
COMMON/I1/NysM,yN1
DIMENSION A(49,1)+4B{49,1),TEMP(49)
DO 1 [=1l4N1

DO 2 J=14N1

SUM=0.D0

DO 3 K=14N1
SUM=SUM+A(] 4K} *B{ K, J)
TEMP(J)=SUM

DO 1 J=1yNL
A(l4J)=TEMP(J)

RETURN

END

SETTUP

SUBROUTINE SETTUP

IMPL ICIT REAL*B{A—-H,0-1)

CUMMON/RL/DX0O+vDX(49) sDYyBETAJROCsCS o XINFoPI2,Y,DY2
COMMON/LL1/NsMsNL M1y K,ID1,ID2,1Z,N2
COMMGON/8ROWN /G AM

THiS SUBROUTINE IS FOR INILTIALIZING PROGRAM CONSTANTS

¥=1.D0
XiINF=20.,00
N=50

M=1le6

K=13
8ETA=4,D0
RO=1.D0
GAM=1.D00
ID1l=49
1D2=50

12=0

N1l=N-1
N2=N-2
DY=2.D0%Y/M
DY2=2.D0%DY
PI=3.1415 G265 3589 7932 DO
P12=2.D0%PI
CALL MESH
CALL FFIX
RETURN

END
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TFIX

SUBRDUTINE TFIX
IMPLICIT REAL*8(A-H,0U-2)
COMMON TI(49)
CCMMON/I 1/NgM,y,N1
COMMON/R L/DX0+DX{4S) ¢ JY+BLTA RO SC,CS o XINF
COMMON /X X/ XD s X{ 50)
ND 2 I=1eN1
2 TUI)=TFUNC(I+X(1)]}
RETURN
EMD

TF UNC

DOUBLE PRECISION FUNCTICN TFUNC (1,X)
IMPLICIT REAL*B8{A-H,0-1)
COMMON/CONTRL/IC
TFUNC=DMAX1( X, 0.00])
G3 TO(1y2y3s4),1C

1 RETURN

2 IF(]EQe26)TFUNC=0.D0
IFULlERL2T)TFUNC=,2500
IF(l.EQ.28)TFUNC=,5D0
FFTURN

3 IF{1leTWe20s0R.1.EQ27TITFUNC=0.D0
IF{I.EQ.28)TFUNC=425DN0
IF(l.EQ.30) TFUNC=,85010
IF{I.EQa3L)TFUNC=1.2D0
RETURN

4 TF({] eEQe26e0Rkel EWe27.0ReI.EQs28)TFUNC=0,20
IF{1.EQ.29)TFUNC=,2D00
IF(l.EQ.30)TFUNC=, 45D0
IF{I ER«31)TFUNC=,TDO
IF{].EQe32)TFUNC=. ST5N0
IF(].EQs33)TFUNC=1.3DC
IF(LEQa34)TFUNC=1.6DC
IF({I.FQ+35)TF{INC=1.950L0
IF{] «€EQa36)TFUNC=2.375D0
IF{L.EQ437}TFUNC=2.8500
IF{I.FQ.38)TFUNC=3,25D0
RETURN
END
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X,y

XY

NOMENCLATURE

Airfoil chord length

Lift coefficient

Semiheight of tunnel

Porosity parameter

Airfoil surface area

Free-stream velocity

Normalized Cartesian coordinates
Cartesian coordinates (Fig. 1)

B/ R(x)

Compressibility parameter
Vortex strength

Lift interference factor, Eq. (13)
Finite spacing in x and y direction
Perturbation velocity potential
Interference velocity potential

Model velocity potential
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